$\mu = 0.55 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int} = 0.019$

 $0.05 \times 0.05 \times 0.02$ mm

7763 measured reflections

4398 independent reflections

3677 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,9-Dimethyl-1,10-phenanthrolinium dioxido(pyridine-2,6-dicarboxylato)vanadate(V) monohydrate

Hossein Aghabozorg* and Elahe Sadr-khanlou

Department of Chemistry, Teacher Training University, Tehran, Iran Correspondence e-mail: aghabozorg@saba.tmu.ac.ir

Received 18 April 2007; accepted 15 May 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.102; data-to-parameter ratio = 15.1.

In the title compound, $(C_{14}H_{13}N_2)[V(C_7H_3NO_4)O_2]\cdot H_2O$, the V^V atom has a distorted trigonal-bipyramidal coordination environment formed by one pyridyl N atom and two O atoms of the $[VO_2]^+$ group occupying the equatorial plane, and two carboxylate O atoms occupying the axial positions. $O-H\cdots O$, $N-H\cdots O$, $O-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, together with π - π stacking interactions [average centroid-to-centroid distance 3.644 (12) Å], seem to be effective in the stabilization of the crystal structure, resulting in the formation of a three-dimensional supramolecular structure.

Related literature

For related literature, see: Ranjbar (2004).

Experimental

Crystal data $(C_{14}H_{13}N_2)[V(C_7H_3NO_4)O_2] \cdot H_2O$ $M_r = 475.32$ Triclinic, $P\overline{1}$ a = 7.1194 (12) Å

b = 10.6843 (19) Å c = 13.480 (2) Å $\alpha = 81.166 (3)^{\circ}$ $\beta = 82.397 (3)^{\circ}$ $\gamma = 81.959 (4)^{\circ}$ $V = 996.8 (3) Å^{3}$ Z = 2Mo *K* α radiation

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.973, T_{\rm max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 291 parameters $wR(F^2) = 0.102$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$ 4398 reflections $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

V1-O2V	1.6158 (14)	V1-01	2.0132 (13)
V1-O1V	1.6228 (14)	V1-N1	2.1107 (15)
V1-O3	1.9842 (13)		
O2V-V1-O1V	109.64 (7)	O3-V1-O1	147.22 (6)
O2V-V1-O3	101.07 (6)	O2V-V1-N1	117.60 (6)
O1V-V1-O3	99.96 (6)	O1V-V1-N1	132.68 (7)
O2V-V1-O1	99.69 (6)	O3-V1-N1	74.31 (5)
O1V-V1-O1	96.56 (6)	O1-V1-N1	73.66 (5)

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1AA \cdots O1S^{i}$	0.88	1.87	2.714 (2)	162
O1S−H1S···O1	0.85	1.89	2.728 (2)	168
$O1S-H2S\cdots N2A^{i}$	0.85	2.49	2.964 (2)	116
$C2A - H2AA \cdots O2^{ii}$	0.95	2.39	3.241 (2)	149
$C5-H5\cdots O4^{iii}$	0.95	2.34	3.238 (2)	157

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x, y, z + 1; (iii) -x, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support by the Teacher Training University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2236).

References

Bruker (1998). SAINT-Plus (Version 6.01), SMART (Version 5.059), SADABS (Version 2.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Ranjbar, M. (2004). Anal. Sci. 20, x135-x136.

Acta Cryst. (2007). E63, m1753 [doi:10.1107/S1600536807023987]

2,9-Dimethyl-1,10-phenanthrolinium dioxido(pyridine-2,6-dicarboxylato)vanadate(V) monohydrate

H. Aghabozorg and E. Sadr-khanlou

Comment

In recent years, the fundamental coordination chemistry and characterization of vanadium compounds have attracted considerable attention, due to their actions in biological systems. A five coordinated vanadium(V) complex with the same ligand was previously reported (Ranjbar, 2004) in which one ($C_7H_3NO_4$) anion was attached to a metal center. We herein report the crystal structure of the title compound, (I).

The molecule of (I) contains one $(C_{14}H_{13}N_2)^+$ cation, one water molecule and one $[V(C_7H_3NO_4)(O_2)]^-$ anion, where the vanadium(V) atom has a distorted trigonal bipyramidal coordination environment (Fig. 1, Table 1). The coordinated pyridyl nitrogen atom (N1) and two oxygen atoms (O1V, O2V) of the VO₂⁺ group occupy the distorted equatorial plane, while the two carboxylate oxygen atoms (O1 and O3) occupy the axial positions around the central atom.

The V1—O1V [1.6228 (14) Å] and V1—O2V [1.6158 (14) Å] bonds are shorter than V1—O1 [2.0132 (13) Å] and V1—O3 [1.9842 (13) Å] bonds, due to the formation of double bonds. The water molecule resides between two ionic units making a bridge-like hydrogen bond. Beside the classic hydrogen bonds, there are also C—H…O type hydrogen bonds (Table 2), which are responsible for stabilization of the crystal network. Each vanadium(V) complex is attached to the neighboring complex and four $(C_{14}H_{13}N_2)^+$ units *via* C—H…O interactions. These interactions, coming inconcert, make an infinite layers which could be described by R^2_2 (10), C^2_2 (15) and R^3_3 (13) graph set descriptors (Fig. 2). Furthermore, considering the average values for intercentroid [3.644 (12) Å] and interplanar [3.297 (16) Å] distances for $(C_{14}H_{13}N_2)^+$ ions [symmetry codes: *x*, *y*, *z*; *x* – 1, *y*, *z*; –*x*, –*y*, –*z* + 2; –*x* – 1, –*y*, –*z* + 2], the π - π stacking interaction between cations can be established. Thus, the three-dimensional supramolecular structure for (I) is confirmed.

Experimental

A pale yellow colored vanadium(V) complex of cation and anion as a proton transfer agent, the title compound, (I), was isolated at pH = 3.0 by stirring an aqueous mixture of the ligand [2,9-dimethyl-1,10-phenathroline (21.2 mg) and pyridine-2,6-dicarboxylic acid (13.9 mg) in water (10 ml)] with 0.5 molar equivalent of vanadium(III) chloride (8.1 mg) at room temperature (yield; 1.79 mg, 73%, m.p. 450 K). Slow evaporation of the solvent during two weeks resulted in X-ray quality crystals. Elemental analysis revealed that one molecule of water is associated as solvate.

Refinement

H atoms were positioned geometrically, with N—H = 0.88 Å (for NH), O—H = 0.85 Å (for OH₂) and C—H = 0.95 and 0.98 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N,O)$, where x = 1.5 for water and methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Graph set descriptors made by different *X*—H···O interactions.

2,9-Dimethyl-1,10-phenanthrolinium dioxo(pyridine-2,6-dicarboxylato)vanadate(V) monohydrate

Crystal data	
$(C_{14}H_{13}N_2)[V(C_7H_3NO_4)O_2]\cdot H_2O$	Z = 2
$M_r = 475.32$	$F_{000} = 488$
Triclinic, PT	$D_{\rm x} = 1.584 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.1194 (12) Å	Cell parameters from 921 reflections
<i>b</i> = 10.6843 (19) Å	$\theta = 2.3 - 27.8^{\circ}$
c = 13.480 (2) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\alpha = 81.166 \ (3)^{\circ}$	T = 120 (2) K
$\beta = 82.397 \ (3)^{\circ}$	Prism, yellow
$\gamma = 81.959 \ (4)^{\circ}$	$0.05 \times 0.05 \times 0.02 \text{ mm}$
$V = 996.8 (3) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	4398 independent reflections
Radiation source: fine-focus sealed tube	3677 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 120(2) K	$\theta_{\text{max}} = 27.1^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -9 \rightarrow 8$
$T_{\min} = 0.973, T_{\max} = 0.989$	$k = -13 \rightarrow 13$
7763 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map

 $R[F^2 > 2\sigma(F^2)] = 0.036$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0602P)^2 + 0.5169P]$ $wR(F^2) = 0.102$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ S = 0.96 $\Delta \rho_{\text{max}} = 0.40 \text{ e} \text{ Å}^{-3}$ 4398 reflections $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$ 291 parameters Primary atom site location: structure-invariant direct Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates a	and isotropic or	equivalent isotropic	displacement	parameters	$(Å^2)$
	1	1 1	1	1	· · ·

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
V1	0.23632 (4)	0.53331 (3)	0.71259 (2)	0.02141 (11)
O1V	0.4234 (2)	0.50716 (13)	0.77320 (10)	0.0315 (3)
O2V	0.0597 (2)	0.47362 (12)	0.78294 (10)	0.0287 (3)
01	0.3179 (2)	0.39575 (12)	0.62365 (10)	0.0271 (3)
02	0.3574 (2)	0.33281 (14)	0.47038 (11)	0.0366 (3)
03	0.1639 (2)	0.71802 (12)	0.72049 (9)	0.0275 (3)
O4	0.0581 (2)	0.91366 (12)	0.64817 (11)	0.0314 (3)
N1	0.1910 (2)	0.61833 (13)	0.56431 (11)	0.0198 (3)
C1	0.3060 (3)	0.41282 (17)	0.52667 (14)	0.0253 (4)
C2	0.2222 (2)	0.54682 (17)	0.48962 (13)	0.0226 (4)
C3	0.1809 (3)	0.59740 (19)	0.39317 (14)	0.0281 (4)
H3A	0.2057	0.5470	0.3396	0.034*
C4	0.1022 (3)	0.7240 (2)	0.37720 (14)	0.0317 (4)
H4A	0.0684	0.7603	0.3122	0.038*
C5	0.0721 (3)	0.79869 (18)	0.45546 (14)	0.0275 (4)
H5A	0.0199	0.8859	0.4448	0.033*
C6	0.1212 (2)	0.74101 (17)	0.54953 (13)	0.0224 (4)
C7	0.1099 (3)	0.80042 (17)	0.64506 (14)	0.0234 (4)
N1A	0.3456 (2)	0.04478 (13)	1.20580 (11)	0.0196 (3)
H1AA	0.3654	-0.0387	1.2212	0.024*
N2A	0.2998 (2)	-0.11965 (13)	1.07341 (11)	0.0200 (3)
C1A	0.3719 (3)	0.11637 (17)	1.27465 (13)	0.0228 (4)
C2A	0.3398 (3)	0.24933 (18)	1.25092 (14)	0.0264 (4)
H2AA	0.3576	0.3023	1.2986	0.032*

C3A	0.2831 (3)	0.30303 (17)	1.15923 (14)	0.0253 (4)
НЗАА	0.2614	0.3933	1.1438	0.030*
C4A	0.2563 (2)	0.22627 (16)	1.08750 (13)	0.0212 (3)
C5A	0.2000 (3)	0.27714 (17)	0.98954 (14)	0.0240 (4)
H5AA	0.1763	0.3669	0.9714	0.029*
C6A	0.1804 (3)	0.19858 (17)	0.92258 (13)	0.0239 (4)
H6AA	0.1436	0.2342	0.8580	0.029*
C7A	0.2141 (2)	0.06288 (17)	0.94763 (13)	0.0206 (3)
C8A	0.1947 (2)	-0.02266 (18)	0.88038 (13)	0.0242 (4)
H8AA	0.1590	0.0090	0.8149	0.029*
C9A	0.2276 (3)	-0.15098 (18)	0.91015 (14)	0.0249 (4)
Н9АА	0.2154	-0.2090	0.8653	0.030*
C10A	0.2799 (2)	-0.19738 (17)	1.00801 (14)	0.0224 (4)
C11A	0.2681 (2)	0.00837 (16)	1.04333 (12)	0.0185 (3)
C12A	0.2899 (2)	0.09300 (16)	1.11330 (13)	0.0193 (3)
C13A	0.4363 (3)	0.05058 (19)	1.37274 (14)	0.0307 (4)
H13A	0.3685	-0.0242	1.3960	0.046*
H13B	0.4086	0.1095	1.4233	0.046*
H13C	0.5740	0.0234	1.3633	0.046*
C14A	0.3109 (3)	-0.33859 (17)	1.04256 (15)	0.0279 (4)
H14A	0.4198	-0.3582	1.0822	0.042*
H14B	0.3369	-0.3843	0.9836	0.042*
H14C	0.1962	-0.3653	1.0844	0.042*
O1S	0.5167 (2)	0.20247 (13)	0.73847 (10)	0.0354 (4)
H1S	0.4510	0.2544	0.6982	0.053*
H2S	0.5160	0.2402	0.7897	0.053*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.02635 (19)	0.01819 (16)	0.02035 (16)	0.00025 (12)	-0.00783 (12)	-0.00297 (11)
O1V	0.0338 (8)	0.0301 (7)	0.0333 (7)	-0.0017 (6)	-0.0154 (6)	-0.0052 (6)
O2V	0.0318 (8)	0.0257 (7)	0.0278 (7)	-0.0021 (6)	-0.0038 (6)	-0.0020 (5)
O1	0.0326 (7)	0.0213 (6)	0.0281 (7)	0.0028 (5)	-0.0091 (6)	-0.0064 (5)
O2	0.0482 (9)	0.0301 (7)	0.0334 (7)	-0.0019 (7)	-0.0013 (7)	-0.0154 (6)
O3	0.0386 (8)	0.0202 (6)	0.0246 (6)	0.0012 (5)	-0.0092 (6)	-0.0054 (5)
O4	0.0360 (8)	0.0195 (6)	0.0380 (7)	0.0012 (6)	-0.0054 (6)	-0.0046 (5)
N1	0.0191 (7)	0.0201 (7)	0.0214 (7)	-0.0036 (6)	-0.0049 (6)	-0.0032 (5)
C1	0.0242 (9)	0.0250 (9)	0.0283 (9)	-0.0043 (7)	-0.0031 (7)	-0.0075 (7)
C2	0.0199 (9)	0.0254 (9)	0.0244 (8)	-0.0067 (7)	-0.0018 (7)	-0.0062 (7)
C3	0.0279 (10)	0.0358 (10)	0.0227 (9)	-0.0096 (8)	-0.0033 (7)	-0.0051 (7)
C4	0.0318 (11)	0.0405 (11)	0.0233 (9)	-0.0092 (9)	-0.0099 (8)	0.0042 (8)
C5	0.0260 (10)	0.0262 (9)	0.0294 (9)	-0.0035 (7)	-0.0071 (8)	0.0023 (7)
C6	0.0178 (9)	0.0213 (8)	0.0281 (9)	-0.0040 (7)	-0.0033 (7)	-0.0015 (7)
C7	0.0210 (9)	0.0217 (8)	0.0279 (9)	-0.0024 (7)	-0.0036 (7)	-0.0037 (7)
N1A	0.0195 (7)	0.0168 (7)	0.0226 (7)	-0.0020 (5)	-0.0025 (6)	-0.0031 (5)
N2A	0.0169 (7)	0.0185 (7)	0.0245 (7)	-0.0010 (5)	-0.0023 (6)	-0.0036 (5)
C1A	0.0190 (9)	0.0273 (9)	0.0232 (8)	-0.0037 (7)	-0.0009(7)	-0.0073 (7)

0.0261 (10)	0.0247 (9)	0.0307 (9)	-0.0048 (7)	-0.0007 (7)	-0.0116 (7)
0.0226 (9)	0.0187 (8)	0.0343 (10)	-0.0018 (7)	0.0008 (7)	-0.0067 (7)
0.0169 (8)	0.0188 (8)	0.0270 (9)	-0.0009 (6)	-0.0002 (7)	-0.0034 (7)
0.0196 (9)	0.0187 (8)	0.0312 (9)	-0.0005 (7)	-0.0022 (7)	0.0018 (7)
0.0192 (9)	0.0266 (9)	0.0229 (8)	0.0000 (7)	-0.0028 (7)	0.0034 (7)
0.0143 (8)	0.0248 (9)	0.0215 (8)	-0.0009 (7)	-0.0008 (6)	-0.0020(7)
0.0182 (9)	0.0340 (10)	0.0203 (8)	-0.0026 (7)	-0.0014 (7)	-0.0048 (7)
0.0183 (9)	0.0308 (9)	0.0273 (9)	-0.0030(7)	0.0003 (7)	-0.0117 (7)
0.0156 (8)	0.0233 (9)	0.0290 (9)	-0.0023 (7)	-0.0001 (7)	-0.0084 (7)
0.0135 (8)	0.0202 (8)	0.0211 (8)	-0.0008 (6)	-0.0006 (6)	-0.0032 (6)
0.0148 (8)	0.0204 (8)	0.0221 (8)	-0.0019 (6)	-0.0014 (6)	-0.0024 (6)
0.0365 (11)	0.0322 (10)	0.0254 (9)	-0.0052 (8)	-0.0079 (8)	-0.0059 (8)
0.0260 (10)	0.0214 (9)	0.0376 (10)	-0.0017 (7)	-0.0045 (8)	-0.0086(7)
0.0530 (10)	0.0245 (7)	0.0245 (7)	0.0098 (6)	-0.0066 (6)	-0.0009 (5)
	0.0261 (10) 0.0226 (9) 0.0169 (8) 0.0196 (9) 0.0192 (9) 0.0143 (8) 0.0182 (9) 0.0183 (9) 0.0156 (8) 0.0135 (8) 0.0148 (8) 0.0365 (11) 0.0260 (10) 0.0530 (10)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0261 (10) $0.0247 (9)$ $0.0307 (9)$ $0.0226 (9)$ $0.0187 (8)$ $0.0343 (10)$ $0.0169 (8)$ $0.0187 (8)$ $0.0270 (9)$ $0.0196 (9)$ $0.0187 (8)$ $0.0312 (9)$ $0.0196 (9)$ $0.0266 (9)$ $0.0229 (8)$ $0.0192 (9)$ $0.0266 (9)$ $0.0229 (8)$ $0.0143 (8)$ $0.0248 (9)$ $0.0215 (8)$ $0.0182 (9)$ $0.0340 (10)$ $0.0203 (8)$ $0.0183 (9)$ $0.0308 (9)$ $0.0273 (9)$ $0.0156 (8)$ $0.0202 (8)$ $0.0211 (8)$ $0.0148 (8)$ $0.0204 (8)$ $0.0221 (8)$ $0.0365 (11)$ $0.0322 (10)$ $0.0254 (9)$ $0.0260 (10)$ $0.0245 (7)$ $0.0245 (7)$	0.0261 (10) $0.0247 (9)$ $0.0307 (9)$ $-0.0048 (7)$ $0.0226 (9)$ $0.0187 (8)$ $0.0343 (10)$ $-0.0018 (7)$ $0.0169 (8)$ $0.0187 (8)$ $0.0270 (9)$ $-0.0009 (6)$ $0.0196 (9)$ $0.0187 (8)$ $0.0312 (9)$ $-0.0005 (7)$ $0.0192 (9)$ $0.0266 (9)$ $0.0229 (8)$ $0.0000 (7)$ $0.0143 (8)$ $0.0248 (9)$ $0.0215 (8)$ $-0.0009 (7)$ $0.0182 (9)$ $0.0340 (10)$ $0.0203 (8)$ $-0.0026 (7)$ $0.0183 (9)$ $0.0308 (9)$ $0.0273 (9)$ $-0.0030 (7)$ $0.0156 (8)$ $0.0202 (8)$ $0.0211 (8)$ $-0.0008 (6)$ $0.0148 (8)$ $0.0204 (8)$ $0.0221 (8)$ $-0.0019 (6)$ $0.0365 (11)$ $0.0322 (10)$ $0.0254 (9)$ $-0.0052 (8)$ $0.0260 (10)$ $0.0214 (9)$ $0.0376 (10)$ $-0.0017 (7)$ $0.0530 (10)$ $0.0245 (7)$ $0.0245 (7)$ $0.0098 (6)$	0.0261 (10) $0.0247 (9)$ $0.0307 (9)$ $-0.0048 (7)$ $-0.0007 (7)$ $0.0226 (9)$ $0.0187 (8)$ $0.0343 (10)$ $-0.0018 (7)$ $0.0008 (7)$ $0.0169 (8)$ $0.0188 (8)$ $0.0270 (9)$ $-0.0009 (6)$ $-0.0002 (7)$ $0.0196 (9)$ $0.0187 (8)$ $0.0312 (9)$ $-0.0005 (7)$ $-0.0022 (7)$ $0.0192 (9)$ $0.0226 (9)$ $0.0229 (8)$ $0.0000 (7)$ $-0.0028 (7)$ $0.0143 (8)$ $0.0248 (9)$ $0.0215 (8)$ $-0.0009 (7)$ $-0.0008 (6)$ $0.0182 (9)$ $0.0340 (10)$ $0.0203 (8)$ $-0.0026 (7)$ $-0.0014 (7)$ $0.0183 (9)$ $0.0338 (9)$ $0.0273 (9)$ $-0.0030 (7)$ $0.0003 (7)$ $0.0156 (8)$ $0.0202 (8)$ $0.0211 (8)$ $-0.0008 (6)$ $-0.0006 (6)$ $0.0148 (8)$ $0.0204 (8)$ $0.0221 (8)$ $-0.0019 (6)$ $-0.0014 (6)$ $0.0365 (11)$ $0.0322 (10)$ $0.0254 (9)$ $-0.0052 (8)$ $-0.0079 (8)$ $0.0260 (10)$ $0.0214 (9)$ $0.0376 (10)$ $-0.0017 (7)$ $-0.0045 (8)$ $0.0530 (10)$ $0.0245 (7)$ $0.0245 (7)$ $0.0098 (6)$ $-0.0066 (6)$

Geometric parameters (Å, °)

V1—O2V	1.6158 (14)	C2A—C3A	1.367 (3)
V101V	1.6228 (14)	C2A—H2AA	0.9500
V1—O3	1.9842 (13)	C3A—C4A	1.407 (2)
V101	2.0132 (13)	СЗА—НЗАА	0.9500
V1—N1	2.1107 (15)	C4A—C12A	1.407 (2)
01—C1	1.304 (2)	C4A—C5A	1.435 (2)
O2—C1	1.216 (2)	C5A—C6A	1.356 (3)
O3—C7	1.300 (2)	С5А—Н5АА	0.9500
O4—C7	1.220 (2)	C6A—C7A	1.431 (2)
N1-C6	1.330 (2)	С6А—Н6АА	0.9500
N1—C2	1.333 (2)	C7A—C11A	1.410 (2)
C1—C2	1.508 (3)	C7A—C8A	1.414 (2)
C2—C3	1.382 (3)	C8A—C9A	1.364 (3)
C3—C4	1.385 (3)	C8A—H8AA	0.9500
С3—НЗА	0.9500	C9A—C10A	1.415 (3)
C4—C5	1.396 (3)	С9А—Н9АА	0.9500
C4—H4A	0.9500	C10A—C14A	1.503 (2)
C5—C6	1.388 (3)	C11A—C12A	1.439 (2)
С5—Н5А	0.9500	C13A—H13A	0.9800
С6—С7	1.509 (2)	C13A—H13B	0.9800
N1A—C1A	1.336 (2)	C13A—H13C	0.9800
N1A—C12A	1.361 (2)	C14A—H14A	0.9800
N1A—H1AA	0.8800	C14A—H14B	0.9800
N2A-C10A	1.333 (2)	C14A—H14C	0.9800
N2A—C11A	1.362 (2)	O1S—H1S	0.8500
C1A—C2A	1.401 (3)	O1S—H2S	0.8500
C1A—C13A	1.496 (3)		
O2V—V1—O1V	109.64 (7)	C1A—C2A—H2AA	119.9
O2V—V1—O3	101.07 (6)	C2A—C3A—C4A	120.83 (16)
01V—V1—03	99.96 (6)	С2А—С3А—НЗАА	119.6
O2V—V1—O1	99.69 (6)	С4А—С3А—НЗАА	119.6
01V—V1—01	96.56 (6)	C3A—C4A—C12A	117.84 (16)

O3—V1—O1	147.22 (6)	C3A—C4A—C5A	123.32 (16)
O2V—V1—N1	117.60 (6)	C12A—C4A—C5A	118.82 (16)
01V—V1—N1	132.68 (7)	C6A—C5A—C4A	120.78 (16)
O3—V1—N1	74.31 (5)	С6А—С5А—Н5АА	119.6
O1—V1—N1	73.66 (5)	С4А—С5А—Н5АА	119.6
C1—O1—V1	123.69 (12)	C5A—C6A—C7A	121.08 (16)
C7—O3—V1	123.61 (11)	С5А—С6А—Н6АА	119.5
C6—N1—C2	121.89 (15)	С7А—С6А—Н6АА	119.5
C6—N1—V1	118.44 (11)	C11A—C7A—C8A	116.76 (16)
C2—N1—V1	119.56 (12)	C11A—C7A—C6A	120.21 (16)
O2—C1—O1	125.46 (18)	C8A—C7A—C6A	123.02 (16)
O2—C1—C2	122.44 (17)	C9A—C8A—C7A	119.59 (16)
O1—C1—C2	112.09 (15)	С9А—С8А—Н8АА	120.2
N1—C2—C3	121.01 (17)	С7А—С8А—Н8АА	120.2
N1—C2—C1	110.77 (15)	C8A—C9A—C10A	119.85 (16)
C3—C2—C1	128.21 (16)	С8А—С9А—Н9АА	120.1
C2—C3—C4	117.85 (17)	С10А—С9А—Н9АА	120.1
С2—С3—НЗА	121.1	N2A—C10A—C9A	122.26 (16)
С4—С3—НЗА	121.1	N2A—C10A—C14A	117.51 (16)
C3—C4—C5	120.81 (17)	C9A—C10A—C14A	120.22 (16)
C3—C4—H4A	119.6	N2A—C11A—C7A	123.74 (15)
С5—С4—Н4А	119.6	N2A—C11A—C12A	118.19 (15)
C6—C5—C4	117.57 (17)	C7A—C11A—C12A	118.07 (15)
С6—С5—Н5А	121.2	N1A—C12A—C4A	118.81 (15)
C4—C5—H5A	121.2	N1A—C12A—C11A	120.16 (15)
N1—C6—C5	120.82 (16)	C4A—C12A—C11A	121.03 (15)
N1—C6—C7	110.84 (15)	C1A—C13A—H13A	109.5
C5—C6—C7	128.34 (16)	C1A—C13A—H13B	109.5
O4—C7—O3	125.37 (17)	H13A—C13A—H13B	109.5
O4—C7—C6	122.36 (17)	C1A—C13A—H13C	109.5
O3—C7—C6	112.26 (15)	H13A—C13A—H13C	109.5
C1A—N1A—C12A	124.06 (15)	H13B—C13A—H13C	109.5
C1A—N1A—H1AA	118.0	C10A—C14A—H14A	109.5
C12A—N1A—H1AA	118.0	C10A—C14A—H14B	109.5
C10A—N2A—C11A	117.80 (15)	H14A—C14A—H14B	109.5
N1A—C1A—C2A	118.35 (16)	C10A—C14A—H14C	109.5
N1A—C1A—C13A	118.39 (16)	H14A—C14A—H14C	109.5
C2A—C1A—C13A	123.25 (16)	H14B—C14A—H14C	109.5
C3A—C2A—C1A	120.10 (16)	H1S—O1S—H2S	105.4
C3A—C2A—H2AA	119.9		
O2V—V1—O1—C1	114.46 (15)	C5—C6—C7—O4	-2.4 (3)
01V—V1—01—C1	-134.26 (15)	N1—C6—C7—O3	-2.3 (2)
O3—V1—O1—C1	-14.2 (2)	C5—C6—C7—O3	178.65 (18)
N1—V1—O1—C1	-1.63 (14)	C12A—N1A—C1A—C2A	0.2 (3)
O2V—V1—O3—C7	-110.14 (15)	C12A—N1A—C1A—C13A	-179.04 (16)
O1V—V1—O3—C7	137.39 (15)	N1A—C1A—C2A—C3A	0.0 (3)
O1—V1—O3—C7	18.2 (2)	C13A—C1A—C2A—C3A	179.25 (17)
N1—V1—O3—C7	5.67 (14)	C1A—C2A—C3A—C4A	-0.1 (3)
O2V—V1—N1—C6	87.64 (14)	C2A—C3A—C4A—C12A	0.0 (3)

O1V—V1—N1—C6	-96.02 (14)	C2A—C3A—C4A—C5A	-178.93 (17)
O3—V1—N1—C6	-6.85 (12)	C3A—C4A—C5A—C6A	178.56 (17)
01—V1—N1—C6	-179.80 (14)	C12A—C4A—C5A—C6A	-0.4 (3)
O2V—V1—N1—C2	-88.52 (14)	C4A—C5A—C6A—C7A	0.3 (3)
01V—V1—N1—C2	87.82 (15)	C5A—C6A—C7A—C11A	0.2 (3)
O3—V1—N1—C2	176.99 (14)	C5A—C6A—C7A—C8A	179.76 (17)
O1—V1—N1—C2	4.04 (13)	C11A—C7A—C8A—C9A	0.2 (2)
V1-01-C1-02	178.41 (15)	C6A—C7A—C8A—C9A	-179.36 (16)
V1-01-C1-C2	-0.6 (2)	C7A—C8A—C9A—C10A	0.3 (3)
C6—N1—C2—C3	-0.7 (3)	C11A—N2A—C10A—C9A	0.0 (2)
V1—N1—C2—C3	175.31 (13)	C11A—N2A—C10A—C14A	-178.67 (15)
C6—N1—C2—C1	178.57 (15)	C8A—C9A—C10A—N2A	-0.4 (3)
V1—N1—C2—C1	-5.41 (19)	C8A—C9A—C10A—C14A	178.24 (16)
O2-C1-C2-N1	-175.26 (18)	C10A—N2A—C11A—C7A	0.5 (2)
O1—C1—C2—N1	3.8 (2)	C10A—N2A—C11A—C12A	-179.80 (15)
O2—C1—C2—C3	4.0 (3)	C8A—C7A—C11A—N2A	-0.6 (2)
O1—C1—C2—C3	-176.96 (18)	C6A—C7A—C11A—N2A	178.95 (15)
N1—C2—C3—C4	-1.4 (3)	C8A—C7A—C11A—C12A	179.72 (15)
C1—C2—C3—C4	179.45 (17)	C6A—C7A—C11A—C12A	-0.7 (2)
C2—C3—C4—C5	2.2 (3)	C1A—N1A—C12A—C4A	-0.4 (3)
C3—C4—C5—C6	-0.9 (3)	C1A—N1A—C12A—C11A	179.01 (16)
C2—N1—C6—C5	2.1 (3)	C3A—C4A—C12A—N1A	0.2 (2)
V1—N1—C6—C5	-173.99 (13)	C5A—C4A—C12A—N1A	179.21 (15)
C2—N1—C6—C7	-177.03 (15)	C3A—C4A—C12A—C11A	-179.14 (15)
V1—N1—C6—C7	6.90 (18)	C5A—C4A—C12A—C11A	-0.2 (2)
C4—C5—C6—N1	-1.2 (3)	N2A—C11A—C12A—N1A	1.6 (2)
C4—C5—C6—C7	177.70 (17)	C7A—C11A—C12A—N1A	-178.66 (15)
V1—O3—C7—O4	177.30 (14)	N2A—C11A—C12A—C4A	-179.01 (15)
V1—O3—C7—C6	-3.7 (2)	C7A—C11A—C12A—C4A	0.7 (2)
N1—C6—C7—O4	176.67 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1A—H1AA…O1S ⁱ	0.88	1.87	2.714 (2)	162
O1S—H1S…O1	0.85	1.89	2.728 (2)	168
O1S—H2S···N2A ⁱ	0.85	2.49	2.964 (2)	116
C2A—H2AA····O2 ⁱⁱ	0.95	2.39	3.241 (2)	149
C5—H5···O4 ⁱⁱⁱ	0.950	2.34	3.238 (2)	157

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) *x*, *y*, *z*+1; (iii) -*x*, -*y*+2, -*z*+1.

Fig. 1

